The flavone apigenin blocks nuclear translocation of sterol regulatory element-binding protein-2 in the hepatic cells WRL-68.
نویسندگان
چکیده
Sterol regulatory element-binding protein-2 (SREBP-2) is a pivotal transcriptional factor in cholesterol metabolism. Factors interfering with the proper functioning of SREBP-2 potentially alter plasma lipid concentrations. Consuming fruits and vegetables is associated with beneficial plasma lipid profile. The mechanism by which plant foods induce desirable lipid changes remains unclear. Apigenin, a common plant food flavonoid, was shown to modulate the nuclear translocation of SREBP-2 in the hepatic cells WRL-68 in the present study. The processing of SREBP-2 protein occurred after translation, and apigenin blocked this activation route. Further examination indicated that AMP-activated protein kinase (AMPK) was activated by the flavone, and co-administrating the AMPK-specific inhibitor compound C could release the blockage. Reporter gene assay revealed that the transactivation of sterol responsive element (SRE)-containing 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) promoter was suppressed by the flavone. Similarly, electromobility shift assay result also demonstrated a reduced DNA-binding activity on the SRE domain under the same treatment. The reduced transactivity and DNA-binding activity could be attributed to a decreased amount of SREBP-2 translocating from cytosol to nucleus as depicted by confocal microscopy. Quantitative RT-PCR assay demonstrated that the transcription of HMGCR followed the same pattern of SREBP-2 translocation. In summary, the present study showed that apigenin prevented SREBP-2 translocation and reduced the downstream gene HMGCR transcription. The minimum effective dosage should be achievable in the form of functional food consumption or dietary supplementation.
منابع مشابه
The Flavone Luteolin Suppresses SREBP-2 Expression and Post-Translational Activation in Hepatic Cells
High blood cholesterol has been associated with cardiovascular diseases. The enzyme HMG CoA reductase (HMGCR) is responsible for cholesterol synthesis, and inhibitors of this enzyme (statins) have been used clinically to control blood cholesterol. Sterol regulatory element binding protein (SREBP) -2 is a key transcription factor in cholesterol metabolism, and HMGCR is a target gene of SREBP-2. ...
متن کاملبررسی ارتباط میزان بیان ژن پروتئین متصل شونده به عنصر تنظیمی استرول با پروفایل لیپیدی
Background and purpose: Atherosclerosis is a form of arteriosclerosis that is one of the main causes of death in the world. In coronary artery disease, the vessels are stenosed due to lipid aggregation and inflammation. Epidemiologic studies have shown that in addition to demographic factors such as age and sex, blood pressure, smoking, obesity diabetes and genetics are also associa...
متن کاملThe IGF2 mRNA binding protein p62/IGF2BP2-2 induces fatty acid elongation as a critical feature of steatosis.
Liver-specific overexpression of the insulin-like growth factor 2 (IGF2) mRNA binding protein p62/IGF2BP2-2 induces a fatty liver, which highly expresses IGF2 Because IGF2 expression is elevated in patients with steatohepatitis, the aim of our study was to elucidate the role and interconnection of p62 and IGF2 in lipid metabolism. Expression of p62 and IGF2 highly correlated in human liver dise...
متن کاملInsig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins.
This paper describes insig-2, a second protein of the endoplasmic reticulum that blocks the processing of sterol regulatory element-binding proteins (SREBPs) by binding to SCAP (SREBP cleavage-activating protein) in a sterol-regulated fashion, thus preventing it from escorting SREBPs to the Golgi. By blocking this movement, insig-2, like the previously described insig-1, prevents the proteolyti...
متن کاملO-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells
Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The British journal of nutrition
دوره 113 12 شماره
صفحات -
تاریخ انتشار 2015